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Dissipative corrections to the logarithm of the probability of escape from a metastable state of
an underdamped Markov system are considered. The approach proposed is based on the Poincaré
cross-section method applied to the optimal path along which a system moves, with an overwhelming
probability, in the course of a fluctuation resulting in escape. The corrections depend crucially on
the structure of the trajectories of motion of the system near the saddle point in the absence of

dissipation and fluctuations.

For two important patterns of the trajectories the corrections are

~ n%Inn and ~ n where 7 is a dissipation parameter. Numerical analysis of the escape probabilities
for a nonlinear oscillator bistable in a nearly resonant field is fulfilled and the results are shown to
be in good agreement with the analytical predictions. A feature of the pattern of the optimal paths
in systems without detailed balance, the onset of caustics, is revealed.

PACS number(s): 05.40.4j, 05.70.Ln, 42.65.Pc
I. INTRODUCTION

The problem of the influence of dissipation on the prob-
ability of escape from a metastable state has been exten-
sively studied in recent years, primarily in the context
of quantum tunneling with dissipation, in particular that
in Josephson junctions and superconducting quantum in-
terference devices (SQUID’s) (see Ref. [1] for a review).
The model of interaction with a bath is chosen usually
in such a way that the equation of motion of a system in
the classical limit is of the form of that for a Brownian
particle,

G+2Tg+U'(g) = f(t), (f(t)) =0,

1)
(£(£)£(0)) = 4TT4(t)

with the friction force —2I'¢ proportional to velocity, and
with the potential U(q) that has a metastable local min-
imum; T is the temperature of the bath. For the system
(1), the probability of escape from the metastable state
via thermal activation is W = Aexp(—AU/T) (2], with
the activation energy AU = U(gs) — U(geq) independent
of the friction coefficient T" (gs and geq are the positions
of the local maximum and minimum of the potential,
i.e., of the saddle point s and stable equilibrium point
in the phase space). It is the prefactor A only that de-
pends on I'. This dependence was analyzed in Ref. [2]
for strong to intermediate friction, while for weak fric-
tion, I' < |U”(g,)|Y/?T /AU, it was considered in Ref. 3]
(see also references therein).

The reason why the escape activation energy is inde-
pendent of T' is that dissipation and fluctuations of the
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system (1) are interrelated via the fluctuation-dissipation
theorem and the quasistationary intrawell probability
distribution p(q, p) is close to Boltzmann one, p(q,p) =~
Cexp|—E(q,p)/T) for U(gs) — E > T, where E(q,p) is
the energy. This distribution is formed over the relax-
ation time ¢, [t, = [~! for the system (1)], and remains
quasistationary in the time domain

tr <<t< WL (2)

The escape rate is determined by the probability to
find the system near the unstable equilibrium point
(g = ¢s,p = ¢ = 0), and therefore it is given by
exp(—AU/T), with an accuracy to a prefactor. In the
general case of nonthermal systems, e.g., those driven by
time-dependent fields, dissipation would be expected to
influence not only the prefactor, but also the “activation
energy” of the escape rate.

In the present paper dissipative corrections to the ar-
guments of the exponentials for the escape rates of under-
damped thermal-nonequilibrium classical systems are an-
alyzed. The problem is actual for many physical systems,
in particular, for weakly absorbing optically bistable sys-
tems displaying refractive bistability [4], underdamped
dc-biased Josephson junctions with coexisting regimes of
dc and ac current [5], and electrons trapped in a Penning
trap and displaying bistability of resonantly driven cy-
clotron motion [6]. We note that for periodically driven
systems, including the latter one, it is not energy but
quasienergy [7] (see also Sec. IV below) that is conserved
in the neglect of external noise and of coupling causing
dissipation.

A convenient approach to the analysis of the escape
rates for systems driven by weak Gaussian noise is based
[8-11] on the method of optimal path. The idea goes
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back to Feynman [12], and a rigourous formulation was
given by Wentzel’ and Freidlin [13] in the problem of
probability distribution of a Markov system with a posi-
tive definite matrix of diffusion coefficients (see also Refs.
[14,15]). The method of optimal path makes it possible
to reduce, to logarithmic accuracy, the calculation of es-
cape probability of a noise-driven system to a solution
of a boundary-value problem for a set of differential or
integrodifferential equations. The explicit form of the
equations depends on the form of the initial equations of
motion of the system and on the shape of the power spec-
trum of noise, and even for white-noise-driven systems
the problem is nonintegrable, generally speaking [16,17].
It is substantial, however, that if the boundary of the
basin of attraction to a stable state of the initial sys-
tem (in the absence of noise) is smooth the optimal path
along which the system escapes (with an overwhelming
probability) ends in the saddle point on this boundary
[11].

The motion of an underdamped system driven by weak
noise is mostly vibrations with an energy (quasienergy)
E slowly varying in time. Therefore one would expect
the quasistationary distribution p in the time range (2)
to depend on coordinates and momenta of the system in
terms of E(q,p), primarily. The corrections proportional

to [w(E)t,]”! where w(E) is the eigenfrequency of the
vibrations with a given energy, were considered in Ref.
[16(b)]. These corrections arise in the argument of the
exponential, so, they can be large in absolute value even
for small ¢~ !, We note, however, that the eigenfrequency
w(FE) falls down to zero for E approaching the energy of
a saddle. Therefore, the dissipative corrections should
increase for such energies and one would expect them to
be particulary important just for the escape rates. More-
over, since w(E) is a nonanalytic function of the energy, a
simple perturbation theory in {w(E)t,a]_1 is inapplicable
and the corrections to the escape rates can be nonana-
lytic in the dissipation parameters.

The dissipative corrections are investigated in the
present paper for white-noise-driven systems of a quite
general form. The zero-damping limit is considered in
Sec. II. In Sec. III there is proposed a method that makes
it possible to find nonanalytic corrections; it is based on
the fact that the slowing down of the motion along the
optimal path occurs near a saddle point, but in the vicin-
ity of this point the equations of motion can be linearized
(we note, however, that the corrections are not “local”
themselves; they are determined by the motion far from
the saddle point and depend crucially on the structure
of the trajectories of the motion in the absence of noise).
In Sec. IV the results are applied to a nonlinear oscilla-
tor bistable in a nearly resonant field, which models in
particular bistability of a trapped electron investigated
in Ref. [6]; to the lowest order in dissipation the escape
rates for this model were found in Ref. [8]. The ana-
lytic expressions are compared with detailed numerical
data for the above model. The data has been obtained
by solving the boundary-value problem for the optimal
paths along which the oscillator escapes from the stable
states. A new generic feature of the pattern of optimal
paths, the onset of caustics, is revealed.
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II. ACTIVATION ENERGY OF A TRANSITION
IN ZERO-DAMPING LIMIT

A. The model

We shall consider fluctuations of a dissipating noise-
driven dynamical system described by the equations

G=gp—nq+ f1t), p=—gq—mD+ f2(t) ,

(f1,2) =0, (fi(t)f;(¢")) =nDBi;(q,p)6(t —t'),  (3)
_ 99 _9g

gp——apv gq——aq .

Here, g = g(q,p) is the effective dimensionless energy

of the system; the dimensionless parameters n and D

characterize the “strength” of dissipation and noise and

are assumed small (the criterion is given below).

The dynamics of the isolated system is supposed to be
time reversal, with the coordinate ¢ and momentum p
being even and odd functions of time, respectively, i.e.,
with g(g,p) being an even function of momentum

9(¢,p) = g9(q,-p) - (4)
It is dissipation that brings time irreversibility, and there-

fore we assume that the functions g(q,p), p(q,p) in (3)
satisfy the relations
a(q,p) = @(q, —p), p(q,p) = —b(q,—p) - (5)

Equations (4) and (5) hold for a variety of physical
systems in the absence of a magnetic field, including
those mentioned in the Introduction, in particular col-
loidal particles driven by a potential field [their dynamics
is reasonably well described by Eq. (1) and is of interest
for various studies in physics, cf. Ref. [18] and references
therein] and a nonlinear oscillator driven by a nearly res-
onant force (in this case g is not energy, but quasienergy;
see below). The explicit form of the functions g, g, p can
be quite complicated: unlike mechanical energy equal to
the sum of potential and kinetic energies, g(g, p) may not
be a sum of the terms that depend on ¢ and p separately
(cf. Sec. IV).

The topology of the phase space of conservative mo-
tion of a system with two dynamical variables is com-
paratively simple, although even for such systems there
are several patterns of evolution of the trajectories of
conservative motion with the varying energy g(g,p). We
consider the two patterns that are most simple and most
common for bistable systems. They are shown in Fig. 1
and refer to the case when both the center f and the sad-
dle point s involved lie on the g axis. Their coordinates
(¢ = gqf,p = 0 and ¢ = ¢,,p = 0, respectively) are given
by the equation

94(q,0) =0 for g =gqs,qs - (6)

For finite damping the center is assumed to transform
into an attracting focus, and the positions of the fixed
points are shifted along the g and the p axis with respect
to the zero-damping positions by the distances ~ n? and
~ 7, respectively, according to (5). The generalization of
the analysis given below to the case where the attractors
are limit cycles instead of foci is straightforward; it is
the topology of the trajectories in the vicinity of the sad-
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FIG. 1. Two simplest topologically different patterns of
the phase trajectories of conservative motion (7); f is a cen-
ter (it transforms into a stable focus for finite damping), s
is a saddle point. (a) The momentum p as a function of the
coordinate ¢ has two branches for a given energy g, and the
trajectories with g close to gs pass the vicinity of the sad-
dle point once within a cycle. (b) The momentum has four
branches for g close to gs, and the trajectories pass the vicin-
ity of the saddle point twice within a cycle.

)

N

dle point that determines.dissipative corrections to the
“activation energy” of the escape from a stable state.
The pattern in Fig. 1(a) (called type-I pattern in what
follows) is the most standard one; it refers, e.g., to a
particle moving in a potential well, with the center and
the saddle point corresponding to a minimum and max-
imum of the potential. The pattern in Fig. 1(b) (it is
called type-II pattern below) is a bit more complicated.
It refers to systems where dg/0p vanishes on the trajec-
tory not only for p = 0, but also for some p # 0, so that p
as a function of the coordinate q as given by the equation
9(q,p) = g has four (or more) branches in a certain range
of g. For g = g5 [gs = 9(gs,0) is the value of the effec-
tive energy in the saddle point] the trajectory transforms
into two closed loops, one inside the other, touching each
other at the cusp point ¢ = gs,p = 0. It is quite clear
that for g lying on one side of g, the trajectories of the
conservative motion are of the shape of a horseshoe as
shown in Fig. 1(b), whereas for g lying on the opposite
side of g, the two types of the trajectories coexist: those
inside the internal loop of the separatrix are of the shape
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shown in Fig. 1(a), and those outside the external loop
still have a horseshoelike shape, at least for g close to g,.

It is convenient to describe conservative motion by
variables g, T related to ¢,p by the equations

o(g,p)| _
a(rg)| L ™

The variable 7 is seen from (7) to be the “time” of con-
servative motion with a given g. It is proportional to
the phase of eigenvibrations, and ¢,p are periodic in 7
with a period T'(g) = 2n/w(g) [w(g) is the frequency of
eigenvibrations with a given energy g,

q(9, 7 +T(9)) = a(g,7), p(g,7+T(9)) =plg,7),
(8)

9r = G9py Pr = —Yq, !

q9(g,7) = q(g,—7), plg,7) = —p(g,~7) .
In what follows we assume that 7 lies between —17'(g)
and 17T(g) (cf. Fig. 2), and we choose the origin 7 = 0
so that, on the trajectories in Fig. 1, p =0 for 7 = 0 and
q(T = 0) — gy is opposite in sign to g, — g5. Closed loops
in Fig. 1 correspond to horizontal segments on the phase
plane (7, g) in Fig. 2.

When weak dissipation is allowed for in (3), the centers
in Figs. 1(a) and 1(b) are transformed into stable foci and
the closed loops are transformed into spirals along which
the system approaches the foci. Dissipative trajectories
in variables (7, g) are of the type sketched in Fig. 2 with
the arrows pointing in the opposite direction [it has been
taken into account in Fig. 2 that 7 varies from —17'(g)
to 1T(g) and that the period T'(g9) — oo for g — g,].
Dissipation can be assumed weak provided

N, Q= |9qqup|;{_—2q,,p=0 )
(9)
n<w(g) forlg—gs|>n,
where Q, is the characteristic increment or decrement of

the motion near the saddle point. If (9) holds the effect
of dissipation in the absence of noise comes primarily to

FIG. 2. The projection of an optimal path described by
(27) on the (7, g) plane. Segments of the path shown by solid
lines are quasicycles. Horizontal segments (dashed lines) cor-
respond to the conservative motion in the absence of dissipa-
tion and noise, i.e., to the closed loops in the variables (g, p)
in Fig. 1.
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slow variation in time of the effective energy g. The sign
of § averaged over the period T'(g) coincides with that of
g5 — gs (95 = 9(gy,0) is the value of g in a focus], and g
approaches gy over the time ~ n~L.

When considering the symmetry properties of the dif-
fusion coefficients B;;(g,p) in (3) we shall assume that
noise itself does not break the symmetry of the system
with respect to time inversion. In this case

Bij(‘]ap) = Bij(% —p)(_l)H-j (Z,] = 172)7
(10)
B11Byy — B}, >0, Biz = By .

The noise-intensity parameter D is supposed to be
small,

D<n, (11)
so that D is the smallest parameter of the theory. This is
because of the inequality (11) that dissipative corrections
turn out exponentially large.

B. Hamilton-Jacobi equation for the optimal path

A simple and quite general way to obtain equations
for the optimal path of the escape of a system driven by
Gaussian noise is based [8,11] on the Feynman’s idea [12]
of the interrelation between the paths of the system and
of the driving noise. In the particular case of a white-
noise-driven system the equations can be obtained also
by applying a WKB approximation to the Fokker-Planck
equation for the probability density distribution p(g, p)
[14,15,19], i.e., by seeking the solution of this equation in
the form

p(g,p) = const x exp[—R(q,p)/D] .

The distribution p(g,p) is quasistationary in the range
(2), and to the lowest order in the noise intensity D the
equation for R(q,p) is of the form

H(quRp;q’p) =0 ’
(12)
H = %7’) (Blle + 2Bl2Rqu + B22R127)
+(9p — n9)Rq — (94 + MP)Rp

The function R(g,p) can be associated with a mechan-
ical action of a two-dimensional auxiliary system with
the coordinates q,p, and Eq. (12) is then the Hamilton-
Jacobi equation. The related Hamilton equations for the
“coordinates” q,p and “momenta” Ry, R, describe the
extreme paths of the system. The probability of the es-
cape from a stable state f is given, to logarithmic accu-
racy, by the expression [8,9,15(b)]

W = constxexp(—R/D), R = R(§s,Ps), R(@s,P5) =0,

(13)
where Gs,s,Pf,s are the “true” (those allowing for dissi-
pation) values of the coordinate and momentum of the

initial system in the stable state f and in the saddle point
s.
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To calculate the activation energy R of the escape in
the case of weak damping it is convenient to change from
the variables ¢,p to g,7. The Hamiltonian H (12) in
these variables takes on a form

H=R,+ 'r]F(Rrng;Tvg)a

R(r,g9) = R(q(7,9),p(7,9)) »
(14)
F(R:,Rg;7,9) =JRy + TR,
%(MHR +2M12R, R +M22R2) y
where
J(Ta g) = _q—gq —ﬁgpv T(T’ g) = _qTq - ﬁTp 3
or ot dg or
Mll - ZB‘LJ Bm 8.’E ZBzJ aml . (15)
0g Bg
ZB”@:): Bx (z1=q, z2=p) .

Because of the periodicity of ¢, p as the functions of 7
the function R(7,g) is periodic in 7 as well,

R(7,9) = ) Rn(g) exp linw(g)] . (16)

It follows from (16) in particular, that R, is discontinuous
at the boundaries 7 = +T'(g)/2:

T R (476).0) -

(17)

It is seen from (12), (14), and (16) that, to the lowest
order in the dissipation parameter 7,

R(7,9) = Ro(g) -

The equation for Ry(g) =~ Réo)(g) [the superscript (0)
means the zeroth-order approximation in 7] can be ob-
tained by integrating the equation H = 0 over 7 from
—1T(g) to 2T(g) (averaging over 7). It is of the form

Ry(5T(9),9) = Ry(— 3T (9),9) —

(18)

(F (0,R$)im,9))r =0, RE) =dR{" /dg ,

(19)
3T(9)

O GO

g9

2

It follows from (19) with the account taken of Eqs. (14)
and (15) that

d I(g)

B (9) = =2 | dgyres

I(g) = <J(T9g)>7'y

(20)
M(g) = (M22(7,9))~ »

and thus to zeroth order in 7 the activation energy of the
escape
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R~ RO, RO =Rg® .. (21) b69=9g—gs~ 39{P(q—q.) + 29{p%, |69] < |97 — gs|
The probability distribution of a nonlinear system as (24)

given by Egs. (18) and (20) is quasi-Boltzmannian: it
depends on the coordinate and momentum in terms of
the effective energy g only [cf. Refs. [9,16(b),20]], but
the effective “temperature”

O(g) = —M(g)/2I(g) (22)

is energy dependent. For a particular case of a resonantly
driven nonlinear oscillator Eq. (21) goes over into the re-
sult obtained in a different way in Ref. [8]; the probability
distribution was obtained in this case in yet another way
in Ref. [21].

The effective temperature ©(g) (22) is a nonanalytic
function of g, in the general case. The nonanalyticity
is due to the divergence of the period of eigenvibrations
T(g) for g — gs:

T(9) ~ AQ; In (lg — gs|7Y) — 2t5, lg—gsl <1, (23)

where A = 1 for the trajectories of the type I [those in
Fig. 1(a)] and A = 2 for the type-II trajectories [those
in Fig. 1(b); these trajectories are obvious to pass the
vicinity of the saddle point twice within a period].

For g, p lying close to the saddle point the energy g =
g(g,p) as a function of ¢, p is given by the expression

RW(r,g)=
R (r,9)=

R (7, 9) + R$"(g)

- Z (2min)~!

n (#0)

drR(g) /[ OF(R-, R(};iT,9) ORY)
d - OR, or
g R,=0 T

The important consequence of (25) and of the properties
of the kinetics of the system with respect to time inver-
sion (4), (5), (8), (10) is that F(0, Rog;7,g) is even in 7
(i.e., in the momentum p of the initial system) whereas
BF/BRT is odd for R, = 0, and therefore RV (7, g) as a
whole is odd [by virtue of these arguments the term with

AR /Og dropped in the last line in (25) vanishes]. As a
result,

RM(0,9) =0, |g—gs| >n. (26)

The corrections to R(0,g) [or, equivalently, to R(q,p)
for p = 0] for g far from g, are of order n% and will be
neglected in what follows.

A. General formulation

The main dissipative corrections to the activation en-
ergy of the transition R (13) are related to the slowing
down of the motion near the saddle point. It is conve-
nient to analyze them by making use of the Hamilton
equations of motion that correspond to the Hamilton-

exp [inw(g)7] (F(0, R; 7, g

(the superscript (s) means that the derivatives are calcu-
lated for ¢ = g5,p = 0]. It follows from (5), (15), (19),
(20), and (24) that, if B;; are regular for ¢ = ¢g5,p = 0 (as
it would be expected, generally), the functions I(g), M (g)
do not diverge for g — g, although the period T'(g)
does, and thus so do the limits of the integrals that
give T-averaged values I(g), M(g) of J(7,g), Maa(7,g)
(20) (see also below). At the same time the derivatives
I,(g), My(g) are proportional to T(g) o In(|g — gs|7!)
for g — gs. Therefore d©/dg is also proportional to
In(l]g — gs|7!). It is this singularity that gives rise to
nonanalytic dissipative corrections to the escape rates.
We note that for thermally equilibrium systems of the
type (1) the ratio I(g)/M(g) is g independent, and, for-
mally, it is because of this independence that dissipative
corrections do not arise in this case.

III. METHOD OF POINCARE CROSS SECTION
FOR THE OPTIMAL PATH OF THE ESCAPE

To the first order in 7, the dissipative corrections to
the function R(T,g) far from the saddle point are seen
from (12), (14), and (16) to be of the form

)e—inw(g)'r>T

(25)

AF (0, R(()g); T,9) -
— » lg—gsl>mn.
aRog T

f

Jacobi equations (12) and (14). These equations are of

the form
T=1+ oF oF
"\3r, )’ Y= "3R,
(27)
. F
Rgz_naa—g’ R, = —nF, FEF(RT’RQ;T’Q)

where 7, g, R;, Ry are the generalized time-dependent co-
ordinates and momenta of an auxiliary system moving
along the optimal path. The “coordinate” 7 is fast,
0t/0t ~ 1, while g is slow. As a whole, the projec-
tion of the path described by (27) on the (7,g) plane
consists of “quasicycles” shown in Fig. 2 (we note that
they are not identical in shape to the quasicycles of un-
derdamped motion in the absence of noise, and the dif-
ference does not come just to the inversion of time, gen-
erally speaking). In the (g,p) representation the opti-
mal path is a small-step spiral. According to (27), for
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|g — gs| > n the value of 7 changes by the period T'(g)
per time t ~ T(g) ~ Q7. Over this time g and the
“momenta” Ry, R, change by ~ 7. As g approaches g,
the duration of motion along a quasicycle increases, and
therefore the change in g, Ry, R, over a quasicycle in-
creases as well, and it formally diverges for g — g,.

In the range

b9=9—gs (28)

the perturbation theory based on averaging over a cycle
is inapplicable. To analyze the motion in this range we
shall make use of the fact that far from the saddle point
in the phase space (g, p), i.e., for |7| < 2!, the motion

|6g] ~ n,

is “fast” and the perturbation theory in n holds. For .

|| > Q7! the solution of (27) can be obtained explicitly
based on the fact that the system is close to the saddle
point and the equations can be linearized in deviations
from it.

To obtain a through solution it suffices to describe one
quasicycle and then to match the neighboring quasicycles
to each other. We enumerate the quasicycles and count
them off from the latest one, i.e., from the semicycle along
which the system arrives just to the saddle point; the
numbers are therefore increasing in the direction opposite
to that of time on the optimal path. For large numbers
n, i.e. for g far from g,, the solution obtained this way
has to go over into that given by (18), (20), and (25).
This is why it is convenient, allowing for (26), to choose
the point 7 = 0 as a starting point of a quasicycle.

At the instant t, when the auxiliary system passes
through 7 = 0 in the course of the nth quasicycle, its
dynamical variables (other than 7) take on some values
g(tn), Rg(tn), and

R (tn) = —nF (R (tn), Rg(tn); 0,9n) (1 =0).

The problem comes now to the interrelations between
5g(tn) = g(tn) — gs, Rg(tn), and t, with different n that
meet the condition g — g, for t — oo and the relations
(18), (20), and (25) in the limit of large n. In a sense,
the solution of this problem gives not only the value of
the activation energy R (13), but also the logarithm of
the probability distribution —R(r, g)/D for g close to gs.
Obviously, 6g(ty), Ry(ts) are the values of 6g(t), Ry(t) on
the optimal path in the Poincaré cross section of the four-
dimensional phase space of the auxiliary system by the
hypersurfaces 7 = 0 and H = 0. We note, however, that
the system we are considering is continuous; we make use
of Poincaré cross section just to match the solutions for
the turns of the optimal path, and therefore the analysis
differs completely from the interesting analysis of large
fluctuations in systems with discrete time described by
noisy maps (cf. Ref. [22]).

B. Dissipative corrections for
systems with the type-I phase portrait

We start the analysis of dissipative corrections with the
case where the initial dynamical system passes the vicin-
ity of the saddle point once within a cycle of conservative
motion [cf. Fig. 1(a)], so that, for T = 1T(g),g ~ g, the

2453

momentum of the system p passes through zero for ¢ close
to its value in the saddle point gs. It then follows from
(24) that

9$)(gr —gs) > 0. (29)

The most convenient range for matching the sections
that correspond to successive quasicycles of optimal fluc-
tuational path, and thus for obtaining equations for
69(tn), Rg(tn), tn, is the vicinity of the saddle point. To
be more precise, the quasicycles are matched to each
other in the points where p = 0 near the saddle point:

R{), ~ RG)— 7 %sgn (94 1695717

xR (7(t5"), g5 + 6957

895y = 695, (30)
¢ = 89, + /tsti) dtaF(RTaRg3T’ 9)
9n " =0gn TN . ) Rg )
£(E)
n OF(R.,Ry;7,9)
+) __ TyLlgy Ty
R.gn) _Rg(tn)_"?/tn dtT )
where tﬁfh) are the instants for which 7 takes on its lim-

iting values shown in Fig. 2,

T(t) = £3T(695° + 9) (31)
(obviously, these values themselves depend on the instan-
taneous values of the energy g). The first equation in (30)
is just the expression (17) for the discontinuity of Ry (7, g)
for 7 — +1T(g) with account taken of the explicit form
of T'(g) (23) for g close to g;. The matching (30),(31) pro-
vides the sections of neighboring quasicycles to overlap
as the functions of time over finite time intervals.

The behavior of the integrands in (30) in the “danger-
ous” range |t — t,| > Q7! is determined by Egs. (14)
and (15) with the account taken of the explicit form of

the variables g, p as the functions of 7, g that follows from
(7), (28), and (24),

q(7) — g5 ~ 295172 { exp [~ Qs (|| +t5)]
+6gsgn(g{?) exp [Qs (7] + 1))}

p(7) ~ 295 |7/?{ exp [~ Qs (7| + t5)]
—bég sgn(gflz)) exp [Q(|7] + ts)]}sgnT ,
(32)

|69l < g5 — gsl, exp [Qs(|7] +t5)] > 1

[we remind that ¢, + %T(g) is diverging logarithmically as
a function of |g—gs| for g close to g, according to (23)] and
also of the explicit form of the functions g(g, p), 5(q, p):
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a(¢,p) = qs +3,(¢—qs), P=D,p,

S = oq _ 9p
w=awo. 2=(5)  =(%) ,
1/ 4=q,.,p=0 P/ g=q,,p=0

(33)

lg — as| < lgs — gs|, |p| < max|p(r,g5)| -

According to (32) and (33), the functions OF/dg,
OF/OR, near the saddle point contain “fast” terms pro-
portional to exp [£Qs(|7| + t5)]; these terms are ~ n!/2
for |8g| ~ m, so, this is /2 (not n) that is the parame-
ter of the perturbation theory. However, remarkably, be-
cause of the symmetry properties and of the discontinuity
of Ry at the boundary 7 = +17(g) (17) these terms drop
out from the set of matching equations for §g(t,,), Rg(tn).
These are the slowly varying terms in 8F/dg, 0F /OR, in
the vicinity of the saddle point that give the main dissi-
pative corrections to 8g(tn), Rg(tn). It follows from (30)
that these corrections are ~ nT'(g) ~ nlnn.

The details of the perturbation theory are given in the
Appendix. The resulting expression for the activation
energy R that allows for the dissipative correction AR
follows from (A1), (A10), and (A13) to be of the form

R~R©® + AR, AR=Kn?*/lnyg|,

K= —‘1112(93)M_1(g3)ﬂ;1
x((g, + 7,)sgng
+I(g )M (gs) (B9 + B o)), (34)

B = Byj(4s,0) .

The dissipative correction AR (34) for a system with the
type-I phase portrait is proportional to 72|1Inn|, ie., (i)
there is no correction of the first order in the damping
parameter 7, and (ii) the correction is nonanalytic in 7.
To gain some insight into the origin of the structure of
the expression (34) we note first that the variation of g
is quadratic in the velocity of the variables of the ini-
tial system on the optimal path: ¢ is proportional to
the terms g, = 0q/07, gp = —0p/07. Therefore the
main contribution to the change of §g over a quasicycle,
69(tn—1) — 69(tn), comes from the range of the fast mo-
tion far from the saddle point; this change is of order
7. The contribution from the slow motion in the vicin-
ity of the saddle point is of order nQ;1|6g,(li) In }5g7(1i)||;
this is because the duration of the slow motion is ~
Q! 1n|6g5||, and the smooth component of the ¢ is
~ gt according to (15), (24), (27), and (32) [near the
saddle point p? ~ |8g57)], (¢ — 4,)? ~ [6957 ).

The variation of Ry, on the other hand, is not related
directly to the initial system being in motion, and there-
fore Ry is changed most strongly just in the vicinity of
the saddle point, and the total change over a quasicy-

(£)

cle makes ~ n|ln|6gn ’||. In the range |6g| ~ n we can
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replace In I(Sg,(li)l by Inn, i.e., to the lowest order of the
perturbation theory, the logarithm can be assumed in-
dependent of 6g. At the same time, for |6g| > 7 the

expression for Réo) that follows from (15), (20), and (26)
gives Ry(0, g) to the accuracy n?, and in particular the
term 8gln|8g| in this expression is accurate to n2. It
would be expected from scaling arguments that Eqgs.(20)
and (26) for R, (0, g) hold for all §g up to the last crossing
of the axis 7 = 0 by the optimal path. These arguments
are confirmed by the detailed calculations given in the
Appendix.

The above arguments are not applicable to the contri-
bution to the activation energy R from the last (zeroth)
semicycle that arrives right to the saddle point. It is of
the form

o0
6R= | (R.#+ Ryg)dt (35)

to

(we have allowed for the fact that it takes an infinitely
long time to reach a saddle point moving along the op-
timal path). Here, the main term in R, is seen from
(14) and (27) to be —nRy(J + 3 M2z R,). The integral of
this expression over 7 (35) between 7 = 0 and 7 = T'/2
(T — oo for g — g,) vanishes, according to (19)and (20)
if Ry = R(()O;(gs) and g = g, in J(7,9), M(7,9), i.e., the
integral is equal to zero to the first order in 1. The value
of Ry in the second term remains nearly constant for the
fast-motion range where g becomes equal to g, to the
first order in 7. Since Rg4(to) = R(()Og) as given by (20),
the second integral in (35) over the fast-motion region is
equal to

gs
-2 dgl(g.)/M(gs
/g(to) 91(gs)/M(gs)

to accuracy ~ n%Inn, and as a whole, there are no dissi-
pative corrections of order 7 to the activation energy R
(21). The corrections are due to the slow motion in the
vicinity of the saddle point in (35) and are therefore of
order n?|Inn|, just as has been written in (34).

The coefficient K in (34) is determined by the values
of both the diffusion (Bﬁ), Bé;)) and drift (¢',7’) coeffi-
cients in the saddle point. The sign of K depends on a
particular form of the parameters, and thus dissipation
can both promote (for K < 0) and hinder (for K > 0)
escape from a metastable state in the case of the type-I
phase portrait of the conservative motion.

C. Dissipative corrections for systems
with the type-II phase portrait

If the phase trajectories surrounding a metastable state
of a system look in the zero-damping limit as the horse-
shoelike trajectories in Fig. 1(b), i.e., if

95 (95 — 95) <0

the dissipative corrections to the activation energy of es-
cape turn out to be parametrically larger than those for
the case of the type-I phase portrait. The detailed anal-
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ysis of the range |g — gs| ~ n can be fulfilled along the
lines described above and in the Appendix. The result
can be understood, however, from the qualitative argu-
ments presented below.

Just as in the case considered above, in the present
case the optimal path of fluctuational escape from a
metastable state is a small-step spiral determined by
Egs.(12) and (14) or Egs. (27). To the lowest order
in 7 the approximation (18) holds for this spiral, and the
action R(7,g) is described by Egs. (19) and (20). How-
ever, the averaging over a period (19) can be viewed now
as that over the external and internal parts of a horse-
shoelike trajectory [cf. Fig. 1(b)], and in contrast to the
former case we have an option of setting 7 equal to zero
for p = 0 on either the external or internal part of the
trajectories. If we set 7 = 0 on the external part then

(Fr0))r = (F(r @))e + (F(m )i » (36)
oy = [ drfrg)

T(g)—7»
(Frg)) = / drf(r.g) , (37)

To consider the equally plausible choice, 7 = 0 on the
internal part of a quasicycle, one should replace 7, by
1T — 7 in (37). The boundary 7, between the parts is
chosen conditionally to lie at the point 8p/87 = 0 with
minimal |p|, where the two “teeth” of the horse-shoe-like
trajectory come most closely to each other.

According to (36) the functions I(g), M(g) in (20) are
given by the expressions

I(g) = I.(9) + Li(9), M(g) = M.(g) + M(g) , (38)

where I, and I;, M. and M; are the values of J(r, g) and
Ma22(7,g) (15) averaged over the external and internal
parts of a cycle, respectively. Because of the relation

OF (R, ROg; 7, g) _ 8F(R‘ra Rog; —, g)

OR, - OR,
that follows from the symmetry properties of the system
with respect to time inversion there are no corrections
~ n to R(0,g) far from the saddle point [cf. (25) and
26)] irrespective of a chosen option for the point from
which 7 is counted off. The analysis similar to that given
in the Appendix proves that there are no corrections ~ n
to R(0, g) up to the last crossing of the axis p = 0 by the
optimal path. Therefore, just as in the former case of the
type-I phase portrait, the main dissipative corrections
come from the last section of the optimal path that lies
between the last crossing of the axis p = 0 where 7 = 0
and the saddle point.

The contribution of the last section to the escape acti-
vation energy R is given by Eq. (35). The second term
in (35), when added to the value R(0, g(to)) of R(7,g) in
the point ¢y on the optimal path gives R(®) (21) to the
first order in 7 as in the case considered in Sec. IIIB.
However, in contrast to the latter case, the first integral
does not vanish to the first order in 7

for R, =0
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00 1T(9)
/ dtR# ~ — |n / drR, (J + 3 MxR,) ,
to 0 g—3gs
(39)

Ry (9s) = —2[Ie (gs) + I (95)] / [Me (gs) + M; (gs))]

[we have taken into account that for g — g, the duration
of motion along the both external and internal parts of
the path is &~ T(g)]. It follows from (36)—(39) that to
the first order in

R~ RO 4+ yRD),

Ie(gs) + Il(gs)
[Me(gs) + Mi(gs)]2

X [Mi(géI)Ie(gs) - Me(gs)Iz'(gs)]

RM — _

(40)

The reason for the correction R(!) to be negative is quite
obvious: the integral (39) taken along the external part of
the last semicycle is opposite in sign to that taken along
the internal part. The true optimal path corresponds
to minimal escape activation energy; therefore, the last
crossing of the axis p = 0 (7 = 0) happens just on that
part of the quasicycle for which the dissipative correction
is negative. Thus, in contrast to the case of the type-I
phase portrait shown in Fig. 1(a), in the case of horse-
shoelike trajectories of conservative motion there arises a
first-order dissipative correction to the activation energy
of escape from a metastable state, and this correction is
negative. Its magnitude depends on the relationship be-
tween the coefficients of drift and diffusion over energy
averaged over external and internal parts of the path for

g —9s.

IV. ACTIVATION ENERGIES OF
FLUCTUATIONAL TRANSITIONS FOR AN
UNDERDAMPED PERIODICALLY DRIVEN

NONLINEAR OSCILLATOR

A system where both types of dissipative corrections
to the probability of escape from a metastable state can
be immediately investigated experimentally is nonlin-
ear oscillator bistable in a nearly resonant driving field.
The system has been mentioned above to model bistable
forced cyclotron vibrations of an electron in a Penning
trap [6]. Fluctuational transitions between attractors of
a periodically driven Duffing oscillator were considered
and the activation energies were obtained to zeroth order
in dissipation in Ref. [8]. We note that the bistability
we discuss emerges because of the field, in the absence
of the field the oscillator is assumed to have one stable
state; the effect of periodic field on the probability of
thermally activated escape from a metastable potential
well was considered in Ref. [23].

The motion of the oscillator in the absence of dissipa-
tion and fluctuations is described by the equation

&

dt”? +wdz + 2% = hcoswpt!, |wo — wp| <K wh -

(41)
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Here, z is the oscillator coordinate, wg is the eigenfre-
quency of small-amplitude vibrations, A is the amplitude
of a nearly resonant field.

If, on one hand, the field is not too large so that the
amplitude of the vibrations is very much smaller than the
characteristic length |w?/v|'/2, and, on the other hand,
coupling to a bath which gives rise to dissipation and
fluctuations of the oscillator is linear in z and weak so
that the oscillator is underdamped, then, for a quite gen-
eral shape of the density of states of the bath weighted
with the coupling parameters, the motion of the oscilla-
tor is mostly fast vibrations at frequency wp with slowly
varying amplitude and phase. It is convenient to describe
this motion in terms of smooth variables ¢, p and “slow”
time ¢,

g = (3]]/8whlwh — wo|)*/?

d
x <a: coswpt’ — w;ld—i sin wht’) sgn(wp, — wo) ,
p=—(3wn/8lwn — wol)*/?

dr
X (x sinwpt’ + w;ld-t7 cos wht’> sgn(wp — wo)

t=|wp — wolt’ . (42)

The equations for g, p that follow from (41) and (42) with
account taken of dissipation and fluctuations are of the
form of Eq. (3) [8], with

9(g,p) = 2(¢® +p* —1)? — ¢BY/2,
B = 3v|h? /32w}|wh — wol? ,

a(¢,p) = q, Plg,p) =p, (43)
By; =By =1, Biag=B1 =0.

The effective energy g (43) is just the dimensionless
quasienergy of the periodically driven oscillator [21]. It
contains one parameter, (, which is obvious to be a di-
mensionless intensity of the driving field. If dissipation
of the oscillator is described by a linear friction force
—2T'dz/dt’ as in Eq. (1) then the dissipation parameter
n in Egs. (3) and (43) is equal to I'/|wp, — wp|. How-
ever, Egs. (3) and (43) hold for a much more broad class
of coupling mechanisms than those assumed in (1): the
delay of relaxation has been neglected on the slow-time
scale |wp —wo| ™1, ! only (see Ref. [8] for details). Also,
random force driving the oscillator is assumed 6§ corre-
lated on the same time scale; if noise is due to thermal
fluctuations in the bath, the characteristic noise intensity
D in (3) is equal to 3|v|T/4w}|wh — wol.

In the weak-damping limit the oscillator is bistable in
the range of the amplitude of the force A and the fre-
quency detuning wy, — wp encompassed by the conditions

P <B<z+in° (n<1).

The coexisting attractors correspond to forced vibrations
with different amplitudes and phases. Phase portraits
in the slow variables ¢, p for the ranges of attraction to
the small- and large-amplitude states (the states 1 and
2) in the limit  — 0 look like those in Fig. 1(a) and
Fig. 1(b), respectively. The quasienergy g takes on its
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minimal value in the large-amplitude state, while in the
small-amplitude one g(gq,p) has a local maximum. The
value g = g, of the quasienergy in the unstable steady
state lies in between the values of g in the attractors.

To zeroth order in dissipation the escape activation en-
ergies R ~ R(© for the oscillator are the functions of one
dimensionless parameter 3 (the dimensionless field inten-
sity) only, and, for the small-amplitude state, R(® de-
creases with increasing 5 and becomes zero for § = 4/27
where this state merges with the saddle state, whereas
for the large-amplitude state the dependence of R(®) on
B is opposite [8].

Dissipative corrections to the activation energies for
the two attractors are qualitatively different as it follows
from the results of Secs. IIIB and IIIC. In the case of
the large-amplitude attractor the correction is described
by Eq. (40) and is of the order of n whereas in the case
of the small-amplitude attractor the main correction is
of the order of n?|Ilnn|. The corresponding coefficients
R(M (40) and K (34) can be calculated numerically as
the functions of B (which is the only parameter of the
problem). The results are shown in Fig. 3. It is seen
from Fig. 3 that the dissipative corrections decrease in
absolute values with increasing 3 for the both attractors
(the zero-dissipation term R increases with 3 for the
large-amplitude attractor).

Analytic expressions for K, R(Y) can be obtained near
bifurcation points 8 = 7? and 8 = 5 + in?. For
small fields the small-amplitude (SA) attractor is much
more stable with respect to fluctuations than the large-
amplitude (LA) one that merges with the saddle point

for 8 = n?. The values of R(©) for these attractors, R(S(R
and Rg)g, respectively, are given by the expressions

R ~1, RO ~4p"? n<p<1, (44)

while, according to Egs. (34), (40) and (43)

21/271'3 —3/4

KEKSAz 64 y

(45)
RM = RI(}K ~=2m BKL1.

The value of K increases sharply with decreasing 5. How-
ever, the dissipative correction K7n?|In7n| remains small
compared to Rga up to the bifurcation point 8 = n?
where the small-amplitude state becomes the only stable
state of the system. At the same time, nRﬁz ~ Rﬁog for
B ~ n?, and the perturbation theory is thus inapplicable.
This would be expected to happen, since the motion in
the vicinity of the large-amplitude attractor cannot be
regarded underdamped for 3 ~ n? where this attractor is
close to the saddle point in the phase space; a theory of
the escape from a metastable state close to an unstable
one was considered earlier [24].

Near the bifurcation point g ~ 2;47 where the small-
amplitude state disappears one has
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3/2
RO ~9(%-8)"", K=Keané(%-0"",

(46)
bom95 (MP<x-0<1),
and, remarkably, the nonanalytic correction turns out to

vanish as rapidly as the main term for 8 approaching the
bifurcation value. This is a feature of a particular form

3
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FIG. 3. Reduced dissipative corrections to the activa-

tion energies of escape from the stable states of (a) small-
amplitude and (b) large-amplitude forced vibrations of a non-
linear oscillator. Full curves: the coefficients K (34) and R™
(40) as the functions of the reduced intensity of the driving
field 8. The circles (n = 0.001) and triangles (7 = 0.01) show
the results for K, R obtained by solving the boundary-value
problem (27') numerically, subtracting from the data the val-
ues R (21) of the activation energies in the neglect of dis-
sipation and then dividing by (a) 7?|Inn| and (b) 7.
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of the coefficients in K as given by (34) for the model
(43); in the general case K is simply proportional to the
distance to a bifurcation point in the parameter space.
In the bifurcation range 2447 — B ~n? Egs. (21) and (46)
are inapplicable, the term Ré?z (46) is of order 73, i.e., it
is smaller than the dissipative corrections ~ n? omitted
in (34). We note that the expression for the activation
energy of escape in the vicinity of a bifurcation point
[24] is given formally by the expression for ng (46) with
-24—7 — (3 replaced by 547 -6+ %ng.

A general approach to the calculation of the activation
energies of fluctuational transitions is based on numeri-
cal analysis of the Hamilton equations (27) in the vari-
ables 7,9, Rr, Ry or (what is often more convenient) in
the variables ¢, p, Rq, Rp:

._0H . O0H . = 0H . _ O0H (27")
1=%r, PTBR, T 8¢ ? op
Numerical analysis of the equations of this sort in the
context of the probability density distribution of a system
without detailed balance was first done by Ludwig [14].
In the context of the escape, numerical analysis was per-
formed by Kautz [20] for a white-noise-driven dc-biased
Josephson junction, with the coexisting stable states cor-
responding to the stable dc and ac regimes.

To find activation energy of the escape it is necessary
to solve the boundary-value problem for Egs. (27’) with
q — q5,p — ps for t — —oo, and ¢ — ¢s,P — Ps
for t — oo (qf,ps and ¢,,ps are the values of ¢,p in a
metastable focus and in a saddle point). In what follows
we present the results of the numerical analysis of the
activation energies and extreme paths for a resonantly
driven nonlinear oscillator. The analysis has made it pos-
sible to test the above analytical expressions for dissipa-
tive corrections and also to find a new type of singularities
inherent to the pattern of the extreme paths in systems
without detailed balance.

The extreme paths emanating from a focus f make up
a single-parameter set in the case of a white-noise-driven
system with two dynamical variables (the more general
case was considered in Ref. [11]; see also Ref. [25] for
a review). This can be easily understood by noting that
in the immediate vicinity of a focus Egs. (27') can be
linearized in

T1=9¢—¢qs, T2=Pp—ps- (47)
The solution of (12), (27’) for small |z 2| is of the form

R(¢,p) = 3 Z Aijzizy, |T1,2] —0
i,7=1,2

(48)

where the coefficients of the matrix || A || are given by
the equations

82H 82H
_Z A 2 | A
> [aRszRxn] fA mifng + Zn: [&riaRzm] ;o

8*H 8%H
+ [axjaRmm]fAm" - [amiaxj] ;
m

(1, =1,2) (49)
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(the subscript f means that the derivatives are calculated
for 1 = 29 = Ry, = Ry, = 0). By implying (47)-(49)
the initial conditions for the extreme paths (27’) can be
chosen at finite small 1, x5 and finite t with R,(t), Rp(t)
determined from (48) and (49) (cf. Ref. [14]). For
t — —oo a path parametrized in this way approaches
z; = zo = 0 (ie, ¢ — gf,p — py). All the points
q,p, Rq, R, a path has passed through in this way can be
equally chosen as the initial ones for the same path (this
provides a basis for the numerical test of the initially cho-
sen x1, z2 being sufficiently small). Different paths can be
parametrized by the distance along a transversal to the
paths. The problem of the calculation of the activation
energy gets thus reduced to that of the determination of
the value of the parameter for which an extreme path
arrives to a saddle point, to a given accuracy.

Numerical results for the activation energies Rga
and Rpa of the transitions from the coexisting small-
amplitude and large-amplitude states of forced vibrations
of the oscillator (41) are shown in Fig. 3. The quanti-
ties plotted immediately are the differences between the
values of Rgp, Rra obtained numerically and the quan-
tities Rglz, RI(EZ‘ (21) that give the activation energies to
the zeroth order in dissipation. It is obvious from Fig. 3
that the numerical data are in very good qualitative and
quantitative agreement with the analytical results for dis-
sipative corrections. These are the coefficients at small
quantities that are compared: e.g., for n = 1073 the dissi-
pative correction Kn?|Inn| makes < 10~°R(®. The data
confirm that for the pattern of conservative trajectories
of the type shown in Fig. 1(a) there are no first-order
dissipative corrections, and the corrections are nonana-
lytic in the dissipation parameter n: the value of |Inn| is
of the order of 7 for n = 1073, whereas the asymptotic
expression (34) for the dissipative correction divided by
n?| Inn| differs from the numerical data by less than 40%.
For the pattern in Fig. 1(b) the dissipative correction is
linear in 77 indeed and negative.

A sample of the paths emanating from the small-
amplitude stable state of an underdamped oscillator is
shown in Fig. 4. The paths are of the spiral shape close
to the focus, but far away from the focus the pattern
of the paths is much more sophisticated. The features
obvious immediately on inspection of Fig. 4 are self-
crossing of the paths and the onset of caustics. These
are not of course the “true’paths of the auxiliary sys-
tem q(t), p(t), Rq(t), Rp(t) but their projections on the
(g,p) plane that are self-crossing, and caustics are the
projections of the folds of the integration surface. The
self-crossing is related to the lack of detailed balance in
a system [16].

Onset of caustics is a generic feature of the sets of opti-
mal paths ¢(¢), p(t) that describe large fluctuations form-
ing the tails of the stationary probability distribution of
systems without detailed balance (the pattern of optimal
paths in the problem of time-dependent probability den-
sity of a transition from one point of the phase space into
another displays caustics even in systems with detailed
balance [26]). Of course, caustics are the features of the
sets, not of individual paths. There are several problems
posed by the onset of caustics, in particular, the position
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FIG. 4. A sample of the extreme paths of a nearly reso-
nantly driven nonlinear oscillator, with clearly seen caustics.
The saddle point is singled out with a rectangle.

of caustics and of their end points. The most interest-
ing ones are certainly related to physical interpretation
of caustics for mono- and multistable systems: a caus-
tic is a “mirror” that reflects optimal paths; therefore,
in the simple-minded picture discussed above, a system
arrives to neighboring points on the opposite sides of a
caustic along completely different paths, which has to be
compatible with the continuity of R(gq, p). This and other
problems will be addressed in a forthcoming paper.

V. CONCLUSIONS

It follows from the results of the present paper that, in
underdamped thermally nonequilibrium systems, there
are exponentially large dissipative corrections to the es-
cape probabilities. The structure of the expression for
the correction to the activation energy of escape depends
crucially on the pattern of trajectories of conservative
motion close to the saddle point. For the pattern shown
in Fig. 1(a) (the trajectories pass the vicinity of the sad-
dle point once within a cycle) the correction is nonana-
lytic in the dissipation parameter n (~ n°lnn), whereas
for the pattern of the type in Fig. 1(b) (the trajectories
pass the vicinity of the saddle point twice within a cycle
and therefore the momentum of the system as a function
of the coordinate has four or more branching points) the
correction is of order n and always negative, i.e., dissipa-
tion “promotes” escape.

The onset of relatively large dissipative corrections is
related to the slowing down of the motion of a system in
the vicinity of a saddle point. However, the corrections
are not determined by local characteristics of the motion
near the saddle point; it is the motion with the energies
(quasienergies) close to the energy of the saddle point
that contributes to the corrections. At the same time, the
evaluation of the corrections is based substantially on the
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fact that, in the vicinity of a saddle point, the equations
of motion can be linearized and successive sections of the
optimal path can be matched to each other. The method
is not limited to white-noise-driven systems. It can be
generalized to some other classical fluctuating systems,
and also to some quantum systems.

We note in conclusion that, since dissipative correc-
tions to the escape probabilities are comparatively large,
they can be investigated experimentally for various ther-
mally nonequilibrium systems and for electrons in Pen-
ning traps [6] in particular, and thus the qualitative dif-
ference between the corrections for the different types of
the pattern of the trajectories of conservative motion can
be observed.

APPENDIX

To find 7(t), g(t), and Rg4(t) on the optimal path within
one quasicycle for the effective energy g close to its
saddle-point value g, one can expand the derivatives
OF/OR,,0F/0R4, 0F/0g in the equations of motion (27)
in R,(t) and in the deviations 7(¢) — (¢t — t,),g(t) —
g(tn), Rg(t) — Ry(tn) (at t = t, the trajectory passes
through the point 7 = 0 in the nth quasicycle). It is the
range |t — t,| > Q! where relatively large (nonanalytic
in ) corrections to 7(t), g(t), Ry(t) arise. The coefficients
of the function F in this range are determined by Egs.
(10), (15), (32), and (33) in the explicit form. In partic-
ular,

I~ —qlg89 /2|27 + 6gsgn(g(Y))e?]
—5 (@ — 7,) [e7* + (69)% )
— (@, + 7,) 69 sgn(gl?)

A=Qs (|7 +1ts), 69 =g9—gs, (A1)

Mz = gsen(9s))(B{Y o) — BSof2)
x [6—2/\ + (69)262)\]

+69(BY g9 + B ¢%)), BY =BY(q,,0) .

Near the saddle point e=* ~ |6g|1/2 ~ n'/2 [cf. (23)] and
therefore J ~ |6g|1/? ~ n'/2 My ~ |6g| ~ 1. It follows
then from (27) that R, ~ 13/2, and the terms ~ R, can
be neglected when one seeks the lowest-order dissipative
corrections to g, R.

J

T(t) — T(tn) — (t — tn) = N E (|t — tal) + Q7 t — tallCn — Lsgn(g{)) (T, + D)), |t —tal > Q1.
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To analyze the corrections for large |t — t,| it is con-
venient to change from the differential equations (27) to
the integral ones:

_ t F
Agn(t) = g(t) —g(tn) =n /tn dtﬁ; ,

(A2)
t
ARy (t) = Ry(t) — Ry(tn) = —1 dta—F
t. 09
[Eq. (27) for 7(t) can be transformed in a similar way].
The coefficients at Ry, R, in F as given by (14) and (15)
are analytic in g [cf. (Al)]. At the same time, they
contain the terms that diverge formally for |7| — oo.
Just these terms are of primary importance close to the
saddle point [the period T(g) — oo for g — g;]; they give
rise to nonanalytic in 7 corrections to R.

To the lowest order in 7 the values of g, Rgy,7 in
OF/0Rg4 in (A2) can be replaced by gs, Rg(tn),t — tn ,
respectively. It follows from (Al) and from the explicit
form of the function F (14) that 0F/8R, ~ n'/? for
[t —tn| > Q7 1, and therefore the main contribution to
Agn(t) for large |t — t,| in (A2) comes from the integra-
tion over a range ~ §;! about t, . This contribution is
given by the expression

Agt) = Ln(I(gs) + Ry(tn)M(gs)] sgn(t — tn),
(A3)
It —tn| > Q7.

On the other hand, the main contribution to ARyy(t)
comes from the range of large |t — ./,

ARgn(t) = nRy(tn) [€ (It — tal) sgn(t —tn) + (t — tn)Cn] ,

6) = sen (982)) @l2gf) |2 exp @t + £)] ,  (A9)

¢o = sen (943)) (@ + 1)
—3R,(ta)(B{Y gl + B gle)), |t —ta] > Q51

The first term in AR, ,(t) as given by (A4) is of or-
der n'/2, while the second one is ~ 7|t — ¢,| and for
[t —tul ~ 3T (89 + gs) ~ |In7| it makes ~ nllnn| > n.
Respectively, the corrections ~ 7 in (A4) have been ne-
glected.

The lowest-order corrections to 7(t) can be expressed
in terms of {,, £(t) too:

(A5)

In contrast to Eqs. (A4) and (A5) that give corrections to R, T, the term ~ 7 in (A3) is of the order of the main
term 6g(t) in the actual range of g. Therefore, to obtain dissipative corrections we find a higher-order term in Eq.
(A2) for 6g(t). This can be done immediately by expanding 8F/0R, in g(t) — gs, Rg(t) — Rg(tn), T(t) — 7(tn) in (A2).
Since only nonanalytic in 7 corrections are of interest, it is the range of large |t —t,| in (A2) that has to be considered,
and the expressions (A3)—(A5) can be used here. The result of integration is of the form



2460 V. A. CHINAROV, M. I. DYKMAN, AND V. N. SMELYANSKIY 47

AgPH)(t) m —ng (|t — tnl) sgn(t — tn) {8555 — sen(afy) exp [~29 (It — tal +t)]}
(A6)
~21(t — )65 [Gn — 3s0(983) (@ + )]

635 = 6g(ts) + a|lAgV|, a==.

The corrections to g(t) (A6) just as those to Ry, T contain “fast”and “slow” terms that, when divided by |6g| ~ 7, are
of the order of /2 and n|In7)|, respectively. The signs + and — refer to the motion forward and backward in time
with respect to the central point of a quasicycle (where 7 = 0), i.e., to t — ¢, > 0 and ¢t — ¢, < 0, respectively, and the

quantities 5§,(1+) and 657(1*) are the values of the effective energy (minus g,) at the end and at the beginning of an nth

cycle, to the lowest order in 1. The duration of motion along a semicycle, & _ tn, is seen from (23) and (31) to be
equal to
) —t, = 200,  In(|6550)7) — aty, =1 (A7)

The corrections to t&) as given by (A5) and (31) are ~ n'/2,7|In7).

The matching conditions for neighboring quasicycles (30) and the explicit expressions for the dynamical variables
(A3)—(A7) result in the following set of equations for the values 8g(tn), Rq(tn) of 8g(t), Ry(t) in the central points
(7 = 0) of quasicycles:

89(tn—1) = 69(tn) = (I (95) + Ry (tn) M (gs) ) + n25* [ Innl{31Ry (tn) M (g5) ¢n

~2655PGn — $sen(98y) (g5 + PO}

-1 (A8)
Rg(tn-1) — Rg(tn) = 1825 7| Inn|Rg(tn)Cn -

We have replaced in (A8) |Inég| by |lnn]| in the actual range |6g| ~ 7, i.e., we have allowed for the main logarithmic

corrections only and neglected the terms without |Inn| in (A4)-(A7). The terms containing &(t) in Agy (), ARgn(t)

which are the main ones both in (A4) and (A6) have dropped out of (A8). In the case of the equation for g(t,) this

happened because in the point of matching, $H = ¢{7). | the coefficient at € (|t — tn]) in Eq. (A6) vanishes.

n—1»
The situation is a bit more delicate for Ry. As is obvious from (17) and (23), the matching condition for R, is of
the form

Ry(tn) + ARga(t5P) = Ry(tn—1) + ARgn-1(t521) + 951 (6559) T Ro (3T (g5 + 655, g0 + 6351) -

The last term here is just equal to

MRy (tn)E(AST) = tn) + Ry (tn—1)E(tn—1 — t$7))

as it follows from (27) and (A1), and thus the terms with £(¢) cancel each other.

The values of 6g(t,), Ry(tn) for the optimal path of the escape can be obtained by noting that this path ends in
the saddle point, and therefore for the zeroth semicycle (that starts at t = t)

8357 = 6g(to) + 10 1I(gs) + Ry(to)M(gs)] = 0 . (A9)

One more interrelation between 6g(to) and Rg(to) follows from the condition that for large (but not too large) n the
solution of Eqs. (A3)-(A9) has to match the solution (20) obtained by the averaging method. It is seen from (20)
and (26) with the account taken of the explicit form of the coefficients I(g), M(g) for g ~ g, that

Ry4(0,9) ~ R{(0,9)

I(gs) M(gs)

g=~gs, (l9—gsl>n) . (A10)

I
This expression has to be compared with the expressions  the relations

) ) 7 +p, B9 4 BE
~ =21 (g5) /M (9,)] |1~ 97 In (16g]7") 69 ("8 Doy 21900 202 990 ) o (gf0)) |

Ry(tn) & Rg(to) — nmRy(t0)2;  In7|¢o , Ry(to) = R\ (0,95) + 6R4(t0),
(A11)
69(tn) = 6g(to) — nm [1(gs) + Ry(to)M(9s)] RO (0, 9,) = —2I(gs)/M(gs) , (A12)

that follow from (A3)-(A9) for 1 < n < 7~ lnn|'/2.
By setting Ry(tn) = RY(0, g5 + 6g(tn)) one arrives at §Rg(to) ~ [I(gs)/M(gs)] % 0l Innlo -



47 DISSIPATIVE CORRECTIONS TO ESCAPE PROBABILITIES . . .

It follows from (A10)-(A12) that R{" as given by (19)
and (26) for g = gn (n > 0) differs from the “exact”
value Rg4(t,) by the terms ~ n? . Therefore to the same
accuracy n? we have R(0,g) = R(()O) (g) where Réo)(g) is
given by (20).

To find the main dissipative correction to the escape
activation energy R (13) it is convenient to write R in
the form

R=R (g, +6g(to)) + [ dt(R.++Ryg) ,
to

(A13)

where the second term gives the contribution from the
last semicycle along which the system asymptotically ap-
proaches the saddle point. It is straightforward to evalu-
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ate it allowing for (A3)—(A6), (A9), and (A12), and the
result is of the form of (34).

We note that the perturbation theory can be formu-
lated also in terms of the variables g, p, Rq, R, instead of
7,9, R;, Ry. The advantage of the former ones is that
the equations of motion in the vicinity of a saddle point
can be simply linearized, and the derivatives Ry, R, are
continuous through a path. However, the above anal-
ysis is somewhat more straightforward, and within this
approach there does not arise the problem of nonlinear-
ity inherent to the alternative one (the nonlinear terms
are not small but they cancel each other when the quasi-
cycles are matched similar to the large “fast” terms in
the above analysis).
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